OutlierDetection.jl is an open-source ecosystem for outlier detection in Julia. It provides a range of high-performance outlier detection algorithms implemented directly in Julia. In contrast to previous packages, our ecosystem enables the development highly-scalable outlier detection algorithms using a high-level programming language. Additionally, it provides a standardized, yet flexible, interface for future outlier detection algorithms and allows for model composition unseen in previous packages. Best practices such as unit testing, continuous integration, and code coverage reporting are enforced across the ecosystem. The most recent version of OutlierDetection.jl is available at https://github.com/OutlierDetectionJL/OutlierDetection.jl.
translated by 谷歌翻译
贝叶斯全球优化(BGO)是一种有效的替代辅助技术,用于涉及昂贵评估的问题。可以使用并行技术在一次迭代中评估真实昂贵的目标功能以增加执行时间。一种有效而直接的方法是设计一种采集函数,可以在一次迭代中评估多个解决方案浴的性能,而不是单点/解决方案。本文提出了\ emph {改进的概率}(poi)的五个替代方案,其中有多个点(q-poi)用于多目标贝叶斯全局优化(MOBGO),从而考虑了多个点之间的协方差。提供了所有提出的Q-POIS的精确计算公式和蒙特卡洛近似算法。基于与帕累托 - 前相关的多个点的分布,研究了五个Q-POI的位置依赖性行为。此外,将五个Q-Pois与其他二十个生物目标基准上的其他九个最先进的杂物算法进行了比较。进行了各种基准的经验实验,以证明两个贪婪的Q-Pois($ \ kpoi _ {\ mbox {\ mbox {best}} $和$ \ kpoi _ {\ kpoi _ {\ mbox {all}} $)在低维问题上以及两个探索性Q-Pois($ \ kpoi _ {\ mbox {one}} $和$ \ kpoi _ {\ mbox {worst}} $)在难以实现的高维问题上具有难以适应的帕雷托前界。
translated by 谷歌翻译
基于原子量表的材料建模在新材料的发展及其特性的理解中起着重要作用。粒子模拟的准确性由原子间电位确定,该电位允许计算原子系统的势能作为原子坐标和潜在的其他特性的函数。基于原理的临界电位可以达到任意水平的准确性,但是它们的合理性受其高计算成本的限制。机器学习(ML)最近已成为一种有效的方法,可以通过用经过电子结构数据培训的高效替代物代替昂贵的模型来抵消Ab始于原子电位的高计算成本。在当前大量方法中,符号回归(SR)正在成为一种强大的“白盒”方法,以发现原子质潜力的功能形式。这项贡献讨论了符号回归在材料科学(MS)中的作用,并对当前的方法论挑战和最新结果提供了全面的概述。提出了一种基于遗传编程的方法来建模原子能(由原子位置和相关势能的快照组成),并在从头算电子结构数据上进行了经验验证。
translated by 谷歌翻译
多目标符号回归具有优点:虽然学习模型的准确性最大化,但复杂性自动调整,不需要指定a-priori。优化的结果不再是单一解决方案,而是整个帕累托 - 前面描述了准确性和复杂性之间的权衡。在这一贡献中,我们研究了在使用NSGA-II进行多目标优化时,在象征性回归中最适当地使用哪些复杂性度量。此外,我们提出了一种新的复杂性度量,包括基于模型中发生的函数符号的语义信息,并在几个基准数据集中测试其效果。结果比较多种复杂度措施的实现准确性和模型长度来呈现,以说明算法的搜索方向如何受到影响。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
The visual dimension of cities has been a fundamental subject in urban studies, since the pioneering work of scholars such as Sitte, Lynch, Arnheim, and Jacobs. Several decades later, big data and artificial intelligence (AI) are revolutionizing how people move, sense, and interact with cities. This paper reviews the literature on the appearance and function of cities to illustrate how visual information has been used to understand them. A conceptual framework, Urban Visual Intelligence, is introduced to systematically elaborate on how new image data sources and AI techniques are reshaping the way researchers perceive and measure cities, enabling the study of the physical environment and its interactions with socioeconomic environments at various scales. The paper argues that these new approaches enable researchers to revisit the classic urban theories and themes, and potentially help cities create environments that are more in line with human behaviors and aspirations in the digital age.
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译